06 January 2009

Contemporary Ideas on Ship Stability_Vassalos et.al

Widely publicised disasters serve as a reminder to the maritime profession of the eminent need for enhancing safety cost-effectively and as a strong indicator of the existing gaps in the stability safety of ships and ocean vehicles. The problem of ship stability is so complex that practically meaningful solutions are feasible only through close international collaboration and concerted efforts by the maritime community, deriving from sound scientific approaches. Responding to this and building on an established track record of co-operative research between UK and Japan, a Collaborative Research Project (CRP) was launched in 1995.

Contents
Preface.
Stability of the Intact Ship.

Experimental investigation of ship dynamics in extreme waves (S. Grochowalski). A mathematical model of ship motions leading to capsize in astern waves (M. Hamamoto, A. Munif). A note on the conceptual understanding of the stability theory of ships (A.Y. Odabasi). The role and the methods of simulation of ship behaviour at sea including ship capsizing (V. Armenio et al.). Geometrical aspects of the broaching-to instability (K.J. Spyrou). Application of nonlinear dynamical system approach to ship capsize due to broaching in following and quartering seas (N. Umeda). Broaching and capsize model tests for validation of numerical ship motion predictions (J. O. de Kat, W.L. Thomas III). Sensitivity of capsize to a symmetry breaking bias (B. Cotton et al.). Some recent advances in the analysis of ship roll motion (B. Cotton et al.). Ship capsize assessment and nonlinear dynamics (K.J. Spyrou). The mathematical modelling of large amplitude rolling in beam waves (A. Francescutto, G. Contento). Characteristics of roll motion for small fishing boats (K. Amagai et al.). Piecewise linear approach to nonlinear ship dynamics (V. Belenkiy).

Damaged Ship Stability.
The water on deck problem of damaged ro-ro ferries (D. Vassalos). Water-on-deck accumulation studies by the sname ad hoc ro-ro safety panel (B.L. Hutchison). An experimental study on flooding into the car deck of a ro-ro ferry through damaged bow door (N. Shimizu et al.). Damage stability tests with models of ro-ro ferries a cost effective method for upgrading and designing ro-ro ferries (M. Schindler). About safety assessment of damaged ships (R. Kambisseri, Y. Ikeda). Survivability of damaged ro-ro passenger vessels (B.C. Chang, P. Blume). Dynamics of a ship with partially flooded compartment (J. O. de Kat). Ro-ro passenger vessels survivability-a study of three different hull forms considering different ro-ro-deck subdivisions (A.E. Jost, P. Blume). Simulation of large amplitude ship motions and of capsizing in high seas (A.D. Papanikolaou et al.). On the critical significant wave height for capsizing of a damaged ro-ro passenger ship (T. Haraguchi et al.). Exploration of the applicability of the static equivalence method using experimental data (A. Kendrick et al.). Modelling the accumulation of water on the vehicle deck of a damaged ro-ro vessel and proposal of survival criteria (D. Vassalos et al.).

Special Problems of Ship Stability.
Damage stability with water on deck of a ro-ro passenger ship in waves (S. Ishida et al.). A study on capsizing phenomena of a ship in waves (S.Y. Hong et al.). Physical and numerical simulation on capsizing of a fishing vessel in head sea condition (T. Hirayama, K. Nishimura). The influence of liquid dynamics on ship stability (N.N. Rakhmanin, S.G. Zhivitsa). Exploring the possibility of stability assessment without reference to hydrostatic data (R. Birmingham). Stability of high speed craft (Y. Ikeda, T. Katayama). Nonlinear roll motion and bifurcation of a ro-ro ship with flooded water in regular beam waves (S. Murashige et al.). Effects of some seakeeping/manoeuvring aspects on broaching in quartering seas (N. Umeda). Ship manoeuvring performance in waves (K. Kijima, Y. Furukawa). Stability of a planing craft in turning motion (Y. Ikeda et al.). An experimental study on the improvement of transverse stability at running for high-speed craft (Y. Washio et al.). Water discharge from an opening in ships (S.M. Calisal et al.).

Impact of Stability on Design and Operation.
Passenger survival-based criteria for ro-ro vessels (D. Vassalos et al.). Nonlinear dynamics of ship rolling in beam seas and ship design (K.J. Spyrou et al.). Ship crankiness and stability regulation (N.N. Rakhmanin, G.V. Vilensky). The impact of recent stability regulations on existing and new ships. Impact on the design of ro-ro passenger ships (M. Kanerva). A realisable concept of a safe haven ro-ro design (D. Vassalos). Design aspects of survivability of surface naval and merchant ships (A. Papanikolaou, E. Boulougouris). A technique for assessing the dynamic stability and capsize resistance of ships (M. Renilson). Probability to encounter high run of waves in the dangerous zone shown on the operational guidance/imo for following/quartering sea (Y. Takaishi et al.). Ongoing work examining capsize risk of intact frigates using time domain simulation (K. McTaggart).

Title: Contemporary Ideas on Ship Stability
Author : D. Vassalos, M. Hamamoto, D. Molyneux, A. Papanikolaou
Publisher: Elsevier Science
Number Of Pages: 608
Publication Date: 2000-12-01
ISBN-10 / ASIN: 0080436528
ISBN-13 / EAN: 9780080436524
Binding: Hardcover

---
http://www.filefactory.com/file/408222/n/0080436528_zip
http://rapidshare.com/files/155288302/0080436528.zip
http://ifile.it/0wdfjqb
---
(We do not take responsibility for the ebooks copyright on this site, This documents are found in a free ebook sites in the internet and not tested. please read disclaimer before you download)

Seja o primeiro a comentar

yirfan © 2008 Template by Dicas Blogger.

TOPO